unicyclic graphs with strong equality between the 2-rainbow domination and independent 2-rainbow domination numbers
نویسندگان
چکیده
a 2-emph{rainbow dominating function} (2rdf) on a graph $g=(v, e)$ is afunction $f$ from the vertex set $v$ to the set of all subsets of the set${1,2}$ such that for any vertex $vin v$ with $f(v)=emptyset$ thecondition $bigcup_{uin n(v)}f(u)={1,2}$ is fulfilled. a 2rdf $f$ isindependent (i2rdf) if no two vertices assigned nonempty sets are adjacent.the emph{weight} of a 2rdf $f$ is the value $omega(f)=sum_{vin v}|f (v)|$.the 2-emph{rainbow domination number} $gamma_{r2}(g)$ (respectively, theemph{independent $2$-rainbow domination number } $i_{r2}(g)$ ) is the minimumweight of a 2rdf (respectively, i2rdf) on $g$. we say that $gamma_{r2}(g)$ isstrongly equal to $i_{r2}(g)$ and denote by $gamma_{r2}(g)equiv i_{r2}(g)$,if every 2rdf on $g$ of minimum weight is an i2rdf. in this paper wecharacterize all unicyclic graphs $g$ with $gamma_{r2}(g)equiv i_{r2}(g)$.
منابع مشابه
Total $k$-Rainbow domination numbers in graphs
Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...
متن کاملOn the 2-rainbow domination in graphs
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism G K2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is sho...
متن کاملOn 2-rainbow domination and Roman domination in graphs
A Roman dominating function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The minimum of f (V (G)) = ∑ v∈V f (v) over all such functions is called the Roman domination number γR(G). A 2-rainbow dominating function of a graphG is a function g that assigns to each vertex a set of colors chosen from the set {1, 2}, for each vertex v ∈ V (G) such ...
متن کاملRainbow Domination in Graphs
Assume we have a set of k colors and to each vertex of a graph G we assign an arbitrary subset of these colors. If we require that each vertex to which an empty set is assigned has in its neighborhood all k colors, then this is called the k-rainbow dominating function of a graph G. The corresponding invariant γrk(G), which is the minimum sum of numbers of assigned colors over all vertices of G,...
متن کاملStrong equality between the Roman domination and independent Roman domination numbers in trees
A Roman dominating function (RDF) on a graphG = (V,E) is a function f : V −→ {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value f(V (G)) = ∑ u∈V (G) f(u). An RDF f in a graph G is independent if no two vertices assigned positive values are adjacent. The Roman domination number γR(G)...
متن کاملThe k-Rainbow Domination and Domatic Numbers of Di- graphs
For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (D) with f(v) = ∅ the condition u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where N−(v) is the set of in-neighbors of v. A set {f1, f2, . . . , fd} of k-rainbow dominating functions on D with t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
transactions on combinatoricsناشر: university of isfahan
ISSN 2251-8657
دوره 4
شماره 2 2015
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023